【评】
特斯拉并购 Maxwell,这意味着能源革命向前迈进了一大步。
Maxwell 的干电极技术号称可以把电池的能量密度提高50%(特斯拉目前是 207 kwh/kg,Maxwell 说可以提高到 300 kwh/kg, https://insideevs.com/tesla-claims-model-3-battery-has-highest-energy-density-of-any-electric-car/ )。我对此表示怀疑。
但超级电容技术的大规模实施,无疑是电池技术的巨大飞跃。
超级电容充放电速度快,寿命长,能量密度低 ------ 非常适合用作大电池缓冲。有了缓冲,电池的充放电功率可以提高十倍以上,同时进一步延长寿命。当然,这需要复杂的软件控制系统,但成本并不会增加多少。
正如电脑的存储系统。有了内存作为缓冲,电脑的数据读取速度才得以上千倍提高,电脑才得以广泛普及。
真是让人期待的一波浪潮啊。
PS: Maxwell 被溢价50%收购。但因为近几个月股市崩盘,这个价格仍然比去年高位低 36%( https://seekingalpha.com/news/3429248-cowen-points-tesla-maxwell-synergy )。并购的时机掌握得非常好。
【转】
https://cleantechnica.com/2019/02/04/the-ultracapacitors-electrodes-battery-manufacturing-tech-tesla-gets-with-maxwell-technologies/
The Ultracapacitors, Electrodes, & Battery Manufacturing Tech Tesla Gets With Maxwell Technologies
By Dr. Maximilian Holland, cleantechnica.com
February 4th, 2019
Maxwell’s Durablue Ultracapacitor. Graphic from Maxwell’s Blog.
As reported earlier today, Tesla has nearly acquired Maxwell Technologies, a San Diego–based energy storage products and research business, for $218 million, with the transaction expected to complete in Q2 2019. Is this a stationary storage play or an EV play for Tesla … or both?
Maxwell is Best Known for its Ultracapacitors — What are They?
Ultracapacitors store electrical energy, like batteries, but rather than electro-chemically (batteries), they store the energy electro-statically. There’s also a notable difference in balance between energy density and power density. Lithium-ion batteries have energy density typically in the 150–250 Wh/kg range, and power density in the 250–350 W/kg range. Maxwell’s current commercial ultracapacitors, such as the DuraBlue range pictured above, have much lower energy density of 8–10 Wh/kg (around 5% that of lithium-ion), yet much higher power density of 12–14 kW/kg (around 45× that of lithium-ion).
In the context of EV applications, this means that a 50 kg array of ultracapacitors could potentially input or output 650 kW of burst power (although, at 0.18 kWh, this would last just a second or so). Lower power levels would obviously be sustained for proportionately longer. For context, that’s about twice the power that the Tesla Model 3 Performance’s 480 kg battery pack is currently tuned to provide (331 kW).
If the economics made sense, a modest ultracapacitor array could work alongside the battery pack as a cache of energy, to reduce the load on (and/or work in parallel with) the main battery during short bursts of hard acceleration or strong regenerative braking. Since ultracapacitors can perform reliably over hundreds of thousands of cycles, this could also reduce the cycling load on the lithium-ion pack, and potentially allow it to have a chemistry that prioritizes energy density over power density. The round-trip energy efficiency of Maxwell’s ultracapacitors is in the 80% efficiency range, which is pretty decent (lithium-ion is 80 to 90%). In a mid-2018 conversation with the San Diego Business Journal, Maxwell reported having already sold 6.1 million ultracapacitors to automakers.
With their extremely fast response, high power density, and high cycle durability, ultracapacitors also have applications in fast-response stationary storage applications and grid load balancing (read more about Maxwell’s case studies of these).
Tesla Powerpacks
Dry Battery Electrodes
Another interesting technology that Maxwell has developed is its dry battery electrode manufacturing process. Maxwell believes it has potential to lower traditional battery manufacturing costs:
“We believe that our patent-protected, proprietary manufacturing process, which has been utilized through many years of ultracapacitor production, can be applied to the manufacturing of battery electrode without the use of solvents to produce a highly reliable electrode material with uniform characteristics resulting in enhanced product performance, long-term durability, and lower manufacturing cost.” (Maxwell Annual Report, 2017)
Maxwell undertook proof of concept pilot testing between 2016 and 2017 with an automotive OEM and tier 1 supplier, which the company believes “has demonstrated the significant performance and cost advantages of our dry electrode manufacturing process compared with wet electrode manufacturing, while providing the required consistency and reproducibility in manufacturing a pilot-scale dry electrode roll.” (Maxwell Annual Report, 2017)
Image courtesy of Maxwell’s Technology Presentations
You can see Maxwell’s other claims for the technology in the above presentation slide, from the Needham investor conference in mid January this year. Maxwell’s 2017 annual report claims that, “The dry electrode can be further applied to advanced battery chemistries, offering well over 300 Wh/kg at the cell level.” It’s not clear whether these energy densities are enabled by their technology, or are simply compatible with the technology — the above slide appears to suggest the technology has a direct bearing on energy density. The claims of 2× durability improvement and 10–20% cost reduction will also no doubt have interested Tesla.
How will Tesla Leverage Maxwell’s Technologies
The ultracapacitor technologies and/or the dry battery electrode technologies could have been the attraction for Tesla. Given Tesla’s deep investment in lithium-ion battery production, for both EVs and stationary storage, the potential cost savings and performance benefits from the dry battery electrode process is clearly interesting.
The ultracapacitors also have potential for both stationary and mobile applications. The response speed, power density, and robustness would certainly make sense in heavy-duty grid applications, likely as a fast and powerful energy cache used alongside lithium-ion storage. Although it’s not so clear that there’s a significant need or benefit for ultracapacitors in Tesla’s passenger EV applications (beyond potentially enabling a different balance of lithium-ion cell characteristics, as mentioned above), the Tesla Semi’s heavy-duty use case may make more sense for employing an ultracapacitor cache. There even may be a case for using them in the Roadster for burst power.
It will be very interesting to see how Tesla leverages Maxwell Technologies. Readers will no doubt have many ideas about how Tesla will benefit from this acquisition. Please do jump in and share them in the comments.
Subscribe to:
Post Comments (Atom)
20211004: 心目中近几十年最愚蠢的科研成果
1. 氢燃料汽车 先不考虑安全性。设计者有没有考虑过一公斤液氢的体积,以及容器的质量? 液氢来自于天然气,碳排放咋办? 绿色氢气? 先不考虑成本。 太阳能面板生成一百度电,转成氢气再用于汽车驱动,总损耗约 80% 太阳能面板生成一百度电,输送到电动汽车用于驱动,总损耗约 30%...
-
疫情前在日本玩过十几天。今年,又在日本玩了两周。主要是滑雪温泉和东京区。 日本,真的非常非常独特:穿越几百年的时光仿佛被直接融合在了一起。不仅仅是物质世界,精神世界同样如此。 1. 现金 (古代) 现金是日本的绝对王者。 虽然有传闻,说信用卡和 IC 卡被普遍接收,但要想通行无阻...
-
常识: 如果一个规律对这个世界和我们的生活不会造成深远影响,就不重要。 1. 熵增 熵可以理解为"失序" 为什么熵增重要?因为它可以解释很多基本问题,甚至一些认知范围以外的问题。例如,是否存在一个简单的办法对是否正确进行判断?AI 的终极目标是什么? 以此为基...
-
炒菜锅换了无数个,失望一次又一次。 不管是什么不粘锅,不管用得多么小心,不管什么价位,都撑不过一年。 为什么? 显然,认知出问题了。 在查阅了大量资料,并不断尝试后,终于发现问题所在。 不粘锅之所以不粘,是因为表面涂层。常见的涂层是超级塑料。 塑料可以均匀传递热量,同时不沾油,但...
No comments:
Post a Comment